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ABSTRACT

Magnetotelluric prospecting is a method of geophysical exploration
that makes use of the fluctuaticns in the natural electric and magnetlc; fields
that surround the earth. These fields can be measured at the surface of the
earth and they are related to each other by a surface impedance that is a
function of the conductivity structure of the earth's substrata.

This report describes some new methods for analyzing and interpreting
magnetotelluric data. A discussion is given of the forms of the surface
impedance for various classes of models, including one, two and three
dimensional models. Here, an n dimensional model is one in which the
parameters describing the model are functions of at most n space coordinates.
Methods sre discussed for estimating the strike direction for data that is
at least approximately two dimensional. A new linearized approach to the
one dimensional problem s discussed. Subject to the approximations of the
linearizaticn, it is shown that under the appropriate transformations cf the
frequency and depth scales, the reciprocal of the surface impedance as a
function of frequency is equal to the square root of the conductivity as a
function of depth convolved with a linear response function that is somewhat
like a low pass filter.

Included in this report is a comparison of several methods of esti-
mating the auto and cross power density spectra of measured field data, and
of several methods for estimating the surface impedance from these spectra,
The effects of noise upon these estimates are considerad in some detail.
Special emphasis is given to several types of artificial noise including
aliasing, round off or digitizer noise, and truncation effects. Truncation
effects are of the most interest since they depend upon the particular window

used in the spectral analysis.

ii




-t
.

II.

III.

Iv.

VI.

TABLE OF CONTENTS

ABSTRACT

LIST OF FIGURES

INTRODUCTION

ONE DIMENSIONAL MODELS

A. Homogeneous Half Space Model
Horizontally Layered Model
General One Dimensional Model
Linearized One Dimenslonal Model
Generalized Skin Depth

TWO AND THREE DIMENSIONAL MODELS
A, ZTE and ZTM for Two Dimensional Models

B. Z In a General Coordinate System for Two
Dimensional Models

mUOyu

C. General Form of Z for Three Dimensional Models

D. Comparison of Z Matrix for Two and Three
Dimension Models

E. Use of Hz for Determining the Strike Dlrection

METHODS FOR ESTIMATING THE Z MATRIY. FROM
MEASURED DATA

A. The Genera: Problem
B. Estimation of Power Density Spectra

C. Estimation of Z from Auto and Cross Power
Density Spectra

NOISE PROBLEMS

A. General Incoherent Noise
B. Numerical Noise
CONCLUSION

BIBLIOGRAPHY

iil

Page

21
23

30
31

34
34
36

39
44
44
46
63
83




T

Th CT L

JIeanes

T b, AN

S ST

senew

e

Figure

o W N =

10

11

12

13
14

15

16

LIST OF FIGURES

Description of N Layer Model

Sample Two Layer Apparent Resistivity Curves

Sample Five Layer Apparent Resistivity Curves
Convolver for Linearized One Dimensional Problem
Relative Orientation of x'-y' and x-y Coordinate Systems

Locili of Zl' in the Complex Plane as the Measuring Axes
are Rofated

Individual Harmonics of E Power Density Spectrum
for Digitizer Nolse Test with Expected Noise
Levels for Eight and Twelve Bit Digitizing

Apparent Resistivity versus Frequency for Individual
Harmonics for Elght Bit Digitizing

Apparent Resistivity versus Frequency for Individual
Harmonics for Twelve Bit Digitizing

Average E Power Density Spectrum for Digitizer Noise
Test with Expected Noise Level for Eight Bit
Digitizing

Apparent Resistivity versus Frequency for Average Power
Density Spectra with Eight Big Digitizing

Apparent Resistivity versus Frequency for Average Power
Density Spectra with Twelve Bit Digitizing

Comparison of the Block and Hanning Spectral Windows

H_ Power Density Spectra for 104 Different Data Samples
Recorded in Central Texas

H Power Density Spectra for 104 Different Data Samples
Recorded in Central Texas

Probability of Truncation Error on Impedance Estimates
from Individual Harmonics

iv

Page

65
66
67
68
69

70

71
72

73

74
75

76
77

78
79

80

C et e




NENL A S P A

LAY S WAL SRR

I. INTRODUCTION

Magnetotelluric prospecting is a relatively new method of-geophysical
exploration, although the electric and magnetic fields that it employs have
long been observed. More than a century ago it was recognized by several
investigators that a correlation existed between the variations in the telluric
currents and the geomagnetic field. In 1940 Chapman and Bartels reviewed
the various theories on the relationship between these fields. In the late
1940's and early 1950's several investigators such as Tikhonov in the USSR;
Kato, Kikuchi, Rikitake, and Yokoto in Japan; and Cagnlard in France began
to recognize the electromagnetic nature of these fields.

In 1953 Cagniard published a paper in which he gave a quantitative
description of the relationship between the electr.c and magnetic fields at
the surface of a horizontally layered earth. Soon thereafter many people
began making theoretical and experimental contributions to the field of mag-
netotellurics, By the late 1950's, it was recognized by several investigators
that the scalar impedance described by Cagniard was not sufficient to describe
many of the frequently encountered geologic situations. For an anisotropic
or laterally inhomogeneous earth, the impedance becomes a tensor quantity
(Neves, 1957), (Rankin, 1960), (Cantwell, 1960),(Kovtun, 1961), (Rokityanskii,
1961), (d'Erceville and Kunetz, 1962), (Bostick and Smith, 1962), (Srivastava,
1963). Principal contributors to the growing body of literature on magneto-
tellurics, in addition to those previously mentioned, include Berdichewvskii,
Vladimirov, and Kolmakov in the USSR, Porstendorfer in Germany, Adam and
Vero of the Hungarian Academy of Sciences, Fournier in France, and many
people in the U.S.A. and Canada. Hugo Fournier (1966) has a comprehensive
history and bibliography of the science of magnetotellurics.

The tensor relationship between the E (electric) and H (magnetic) fields

at any given frequency can be expressed as
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where rectangular cartesian coordinates have been indicated. This tensor
impedance Z, a function of frequency and space coordinates, depends upon
the conductlivity of the earth in the surrounding area, and if the horizontal
wavelengths of the incident fields are sufficlently long, Z will be independent
of time and source polarization. Therefore, Z can be a useful measure of the
conductivity structure of the earth, and in fact it can sometimes be interpreted
almost completely in terms of a simplified earth model.

The magnetotelluric problem can conveniently be divided into three
parts: data acquisition, analysis, and modeling. Data acquisition includes
the instrumentation azid allof the field work involved with recording the
electric and magnetic field variations. Analysis includes processing the
field measurements to determine estimates of the Z tensor and other related
parameters. Modeling consists of interpreting this impedance tensor in terms
of a particular earth model.

The research that went into this thesls was aimed at developing better
methods of magnetotelluric analysis and interpretation. The thesis itself
provides for the first time a unified treatment of the techniques developed as
a result of this research. The treatment is facilitated by first considering
the forms of theoretical impedance tensors for several classes of models.
Next, various methods are presented for estimating actual impedance tensors
from measured field data. Finally, the effects that various types of noise

have upon the impedance estimates are considered.




LR

e T BT

rallE v - omion L e sy i

e,

Oy E Y

(ot

II. ONE DIMENSIONAL MODELS

In this chapter several one dimensional models, that is, models which

have medium parameters that are functions of only one space coordinate will
be considered.

A. Homogeneous Half Space Model
The simplest of all possible models is one in which the earth is
considered to be a homogeneous, isotropic half space of conductivity o,
permittivity ¢, permeability M . Within any medium of constant o, ¢, and M,

if we assume time variations of the form ejwt, Maxwell's equations

vxE=—jqu_-i (2.1)
vxﬁ=(o+jwe)f (2.2)
v.-H=0 (2.3)
v.E=0 (2.4)

vE = - vE
e d
where
v? = jous - wlue (2.5)

In rectangular cartesian coordinates, this vector equation sepa-
rates, so that each of the components of the E and H fields satisfies the

scalar Helmholtz equation. Elementary soiutions to this equation are of the
form

-Y x+Yy+Y 2)

where
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Yx +Yy+¥z = Y" = joMo - w HE (2.6)

The general solution is obtained by summing various elemencary solutions with
different values of A, Yx’ Yy, and Yz, subject to the constraints of equation
(2.6). Returning for the moment to an elementary solution, if the coordinate
axes are aligned such that positive z is down, and the direction of propaga-
tion is in the x-z plane, then the elementary solution is of the form

-Yxx - Yzz 2

Ae cy2ay2ay?
X 2

(2.7)

Thus, for a homogeneous plane electromagnetic wave with its
direction oi propagation in the x-z plane, each of the components of E and
H will be of the form shown in (2.7).

Since any homogeneous plane wave can be separated into TE
(horizontal E field only) and TM (horizontal H field only) modes, and since
the equations are linear with respect to the fields, one can consider the two
modes separately.

For the TE mode,

and equation (2.1) becomes

-i - +k 3% =-jwu(1Hx+ij+kHz)

Thus

YZEY = <~ juM Hx

Y E =-~judH
Xy z
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In particular,

Y . {2.8)

and equation (2.2) becomes

'.‘aHY —aHY 1 Y e
i, t k vl o+ jwe)(iEx + ]Ey + kEz)
Thus
YzHy = (g + jw €) Ex
-YXHY =0 + jwe) Ez
EY =0
and
” ) E_x ) YZ ) jquZ 2.9
™ Hy (o +jwe) YZ '

For the range of parameters normally encountered in magneto-

telluric work, displacement currents in the earth can be neglected. That

is to say
we << g (2.10)

so that
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Y™ = jwuo (2.11)

Continuity of the tangential fields at the surface z = 0 requires

that

Yx air Yx earth (2.12)

For a plane wave striking the earth at a real angle 6 measured

from normal incidence,

Yx air = jw /He sin 9 (2.13)

Equation (2.10), (2.12) and (2.13) together imply that
\Yx\2<< by \2. Therefore one may take
YZ=Y=JW (2.14)

Under these conditions, equations (2.8) and (2.9) give

Zp = By = /j%‘- (2.15)

This implies that the impedance is independent cf the polarization of the

elementary solution. Thus, any general solution made up of elementary solu-

tions satisfying the conditions of equation (2.14) will give a scalar impedance

7z = [l8 (2.16)

which will relate any horizontal component of the total H field to the orthogo-

nal horizontal component of the E field.

Actually it is nct necessary to restrict the general solution for

the incident fields to modes corresponding to real angles of incidence, as
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indicated by equation (2.13). Elementary solutions for which \YX|2> wzi-l@’ will

still give rise to total fields whirh satisfy equation (2.16) provided
2
|Yx| << WuO (2.17)

It is convenient to define a parameter 6, called skin depth, for

conductive materials by

5 = V2 om0 (2.18)
Then
Y2 _(+9)z/6 (2.19)
e = e 1T) .

Thus 8 is a measure of the depth that an electromagnetic field
will penetrate into a conductive medium. It is the depth at which the field
will have been attenuated to 1/e of its surface value.

If one then defines the horizontal wavelength A of an elementary

solution by

then a statement that is equivalent to equation (2.17) is that

A >> 6 (2.20)

In other words, the horizontal wavelength is long compared to the skin depth.
In summary then, for an earth model consisting of a homogeneous

half space of conductivity o, with incident fields having horizontal wave-

lengths long compared to a skin depth, the surface impedance will be given

by equation (2.16).




AR o ALy e AT

feaaony

LGOI MRS A g e O ot

B. Horizontally Layered Model
The next model that might be considered is one in which the earth
is represented by a sc. of horizontal layers, each with a different conductivity.
This is usually known as the Cagniard model since it is the one that he consid-
ered in his classic paper. One assumes N layers, as shown in figure 1, and

assumes elementary solutions in each layer of the form

~Y_.2 Y .2 -Y_ X
(Aie zi +Bie zi ) e xi
where
2 2 2
LY - - 3 O‘
{xi+Yzi Yi juM i (2.21)

By requiring that the tangential fields be continuous at each boundary, and
noting that BN = 0 since the fields must vanish for large z, one finds that

the impedance Zi looking down from the top of the ith layer is given by

—ZYzidi
1- Ri e
Zi =Zc>i —ZYzidi ;i=1,2, .. .N-l
1+ Ri e
(2.22)
ZN = ZoN

where di is the thickness of the ith layer, Ri is a reflection coeificient defined
by

R = Zoi ~ zi+1
i Zoi + zi+l

i=),2,...N-l (2.23)

and Z0 is the characteristic impedance of the ith layer, As with the homo-

i
geneous half space, the characteristic impedance for the TE mode is

8




- TE

zojL = J'J)U./Yzi (2.24)
3 and for the TM mode is
™ _ . 2
; Z,, = juu Yzi/Yi (2.25)

Again if one assumes that the horizontal wavelengths of the incident
fields are long compared to a skin depth in each layer, the two modes become

equivalent and

ZOi = \/jwu7oi (2.26)

In either case, one may start at the bottom layer and work up,
computing Ri and Zi using the recursion equations (2.23) and (2.22) until Zl .
the surface impedance, is obtained.

Recall from eguation (2.16) that for a homogeneous half space

Correspondingly, for a layered model, it is customary to define

an apparent conductivity o, (w) or apparent resistivity Da(w) by

wu - 1
IZl(w)\2 pa(w)

o_(w) =

a (2.27)

Some sample curves of apparent resistivity versus frequency for

A scveral models are plotted in figures 2 and 3. For high frequenctes, Ga = Ol'
and for Iow frequencies, Ga = ON' Qualitatively it appears that Oa(w) is a

"smoothed out" version of 6(z) with frequency W being inversely related to

depth z.




Although it is a simple matter to obtain the surface impedance
Zl (w) in terms of ¢(z) for any layered model, the inverse problem of finding
o(z) for a specified Zl(w) is not so simple. It is a nonlinear problem that
in general can be solved only by using iterative techniques. Computer
programs are available for least squares fitting Z(v) curves to N layer
models (Patrick, 1969).

Since ca (») is a smooth curve, one might suspect that fine
details in o(z) cannot be determined from oa(w) . This in fact turns out to
be the case; only gross trends in 0(z) can successfully be determined

from o (w).

~

C. General One Dimensional Model

Consider the case where o(z) is a continuously varying function
of z rather than being restricted to a finite number of homogeneour lavers.
In this case, the recursion equations (2.22) and (2.23) are replaced by a
differential equation for Z. There are several ways to obtain the differential
equation. One way is to combine the recursion equations (2.22) and (2.23),
and let Az replace di' and consider the limit as Az approaches zero. Another
simpler method pointed out by Swift (1967) uses Maxwell's equations directly.
Consider the TE mode with Ex = Ez = 0, Equations (2.1) and (2.2) give

OF

a—zz= jou Hx

OE

-a—}f- = Sjuu H,
oH OH

oE =-=2 4 X

Now

10
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X H b
X
f‘x[ L 2
= ~ jupd + gE_ -7
HZ Yy juwH axZ
X
Yi 2
=—jwu+oZTE-—i;— E
2
BZT Y
_TIE _ . n =X 2
3z jur + il 2 )o ZTE (2.28)
Y
Similarly for the TM mode one obtains
2
dZ Y
™ _ X "l
Sy = jud (1 - Y?‘ ) + OZ o (2.29)

Again when the incident fields have horizontal wavelengths large

compared to a skin depth, the TE and M modes become equivalent and

072 _ 2
S, = - Juu +0Z (2.30)

11




This differential equation is of course nonlinear in Z; however,

if one assumes a o(z) profile such that o(z) = g,, a constant for z > z_, then

1 1’
Z(Zl) = jwu701 and equation (2.30) can be numerically integrated from

z =z, to z = 0 to obtain an expression for the surface impedance in terms of

the clonductivity profile.

Thus, as with the layered model, the forward going problem of
finding the surface impedance in terms of a specified conductivity profile is
relatively simple. Again, the inverse problem of finding the g(z) profile which

produces a specified surface impedance must be worked iteratively.

D. Linearized One Dimensional Model
Consider Jhe following simplification of the one dimensional prob-

lem. Assume that the E ficid as a function of depth z has the form

-§ y(z') dz'
E (z) = Ae ° (2.31)
X
where A is independent of z and
Y(z) = Jijonol(z) (2.32)

From Maxwell's equations

dH
- - GE
dz X

Integrating with respect to z and noting that HV must vanish as z -, one has

o dH ®
Sd—ydz=—SoE dz
z X

o o

or

12




VA
—S Y(z') dz'
H, () - H (o) = - g o(z) Ae °© dz
(o]

Thus, if one defines the surface admittance Y(») as being the reciprocal of the

surface impedance, then

Z
i Geo) = -SOY(Z') dz'
Yo = Py - § o(z) e dz (2.33)

or , from equation (2.32)

VA
) - i § /oG dz
Y(w) = g olz) e ° dz (2.34)
(o]

Now consider the following transformation. Let

o z
e 1 S Jo') dz' (2.35)
o

and

-

e z=~/wu/2 (2.36)

Noting that

a

e ldal = Jo@) dz (2.37)
and

13
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equation (2.34) becomes

TN

iR ) S )

| Yl,) = § \/R&—J g) e(al-%) ea1 da,
or
Y(x,) e 2o °§ VT Rl ) e G2 e-(az —al)dal (2.38)
Noting from equation (2.27) that
Jaa‘(w) = Vou | Y|
equation (2.38) gives
fca(o.)= (Vo) * gl | (2.39)
where
ala) ST e (2.40)

Thus, under this simplified model, which in effect neglects inter-
nal reflections in the E field, the apparent conductivity can be obtained by

convolving the actual conductivity profile with a complex linear response

14
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function in a-space. A plot of the magnitude of g(a) versus a is shown in

figure 4. The magr.itude of g(o) peaks up at a = 0 and decays as |a| increases.
Also

OSO g(a) da| =1
-®

So gf{a), although it is complex, is somewhat like the response of a low pass
filter with unity DC gain. This is consistent with the earlier observation
that o, (w) is a "smoothed out" version of ¢(z) with w inversely related to z.
In practice, this simplified approach is probably not very useful
by itself since the assumed form of the E field in equation (2.31) is not too

realistic. Strictly speaking it is valid only if

do(z)
dz

<< vy (2)o(z) (2.41)

for-all z. On the other hand this approach could be quite useful for obtaining
a first guess to he used in an iterative inversion scheme. In particular if

one simply assumes that
o) ?—‘Oa(a) (2.42)

then frequency and depth may be related through equations (2.35) and (2.36)
to give

O(z) == Ca(?‘a () (2.43)
where
© dwo
z_ (W) = (2.44)
a g ;2w3uo W)
W o a o
15
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Thus, an approximate depth scale may be attached to the frequency scale for
an apparent conductivity curve. Notice that for oa(m) =0, a constant,

equation (Z.44) reduces to the standard skin depth, so one may think of zg ()
as sort of an integrated skin depth. In fact, for cases where equation (2.41)
is satisfied, za(w) will be the depth at which the fields have decayed to 1/e

of their surface value.

E. Generalized Skin Depth
As suggested by the preceding paragraph, it will be useful to
generalize the idea of skin depth for an inhomogeneous model. For a homo-
geneous medium, the skin depth was defined to be the depth at which the
fields are attenuated to 1/e of their surface values. For an inhomogeneous
model, the fields of course do not have a simple exponential decay; however,

if one defines 6(w) to be the depth at which

8 (w)

Re l‘:g Jijwus(z) dz] =1 (2.45)

then 6 will be a good measure of the depth of penetration of the fields and
as such it may be taken as the skin depth.

In the discussion of the horizentally layered model, the state-
ncident fields could be treated as normally incident
plane waves if the actual horizontal wavelengths were long compared to a
skin depth in each layer since for that case

Yzi = Yi

A less restrictive yet adequate requirement is that

5 5
KYZ dz eg Y dz (2.46)
(o] (o]

16
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where 6§ is defined by equation (2.45). Clearly this condition will exist pro-
vided

5 5
K v dz| << S y dz (2.47)
(0] O

whereY2+Y2=Yz=' Mo . But Y_ =jk_=j2n/\. Thus
X z JOEG . x IRy T I A

5

2nd
Syxdz = = (2.48)
O

Also, from equation (2.45), the definition of §,

5
gydz =2

o

Thus, the cendition (2.47) will exist provided

2m o 7
X

or
6 << A\ 2m

So, if the horizontal wavelengths are long compared to the skin depth de~
fined by equation (2.45), the incident fields may in effect be treated as
normally incident plane waves.

in conclusion then, the forward going one dimensional problem
is reasonably simple. If the incident fields are assumed to have horizontal
wavelengths long compared to a skin depth, then any horizontal component

of the H field is related to the orthogonal horizontal component of the E

17
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field by a scalar impedance which is related to the conductivity profile. The

WLy

inverse problem of estimating the conductivity profile from a measured surface

impedance, while it is ronlinear has been worked with some success using

A T “

{ iterative techniques. The simple linearized model discussed here should be

useful for providing a first guess for such iterative solutions.

18
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III. TWO AND THREE DIMENSIONAL MODELS

The scalar surface Impedance discussed in the previous chapter is
not sufficient to describe the relationship between the horizontal E and H
fields for @ model that has lateral variations in conductivity. In this chaper
some general relationships will be developed for two dimensioral models
(models for which o is a function of two space coordinates, the vertical or
z coordinate and one horizontal coordinate, say x) and for three dimen-
sional models (models for which ¢ is a function of all three space coordi-
nates). It will be shown that for these models the impedance must be

expressed as a rank two tensor as was indicated in equation (1.1).
A, ZTE and Z‘I‘M for Two Dimensional Models

Consider again Maxwell's equations as stated in equations (2.1)
through (2.4). If one assumes that the conductivity ¢ is a function of x and

z, equations (2.1) through (2.3) are still applicable; however, equation (2.4)
must be replaced by

v ok =0 (3.1)
where once again it is assumed that displacement currents in the earth are
negligible. If one alsc assumes once again that the horizontal wavelengths
of the incident fields are long compared to a skin depth, then in the earth,
everything is essentially uniform in the y direction so that equations (2.1)

through (2.3) together with equation (3.1) in component form become

oFE

- ——zaz = —ijx (3.2)
aEx -?:EZ
S ax = —)wtu (3.3)
oF
le = jwqu (3.4)




- g;‘f = oE, (3.5)
aHx 3Hz
32 k- oEy (3.6)
o5,
_SX = GEZ (3.7)
aHx BHZ
=t 3 - 0 (3.8)
o) d(¢E)
2 +—2 = (3.9)

X 0z

Observe that the only field components involved in equations (3.2), (3.4),
(3.6), and (3.8) are Ey, Hx' and Hz. Also, the only components entering
equations (3.3), (3.5), (3.7), and (3.9) are Ex’ Ez, and Hy. Thus it is
apparent that the two modes are decoupled and may be considered separately.
The mode involving Ey, Hx' and Hz is usually called the TE or E parallel
mode since the E field is horizonts! and parallel to the strike. The mode
involving Ex, Ez, and Hy is called the TM or E perpendicular mode since
the magnetic field is horizontal and the electric field is perpendicular to the
strike. The strike is the direction along which there are no variations in
the mode!l parameters, in this case, the y direction.

Thus, for a two-dimenslonal model two impedances are required
to deflne the relationship between the horizontal components of the E and H
fields: Z'I'E= -Ey/Hx and ZTM= Ex/Hy’ Exact solutions for ZTE(w,x) and
ZTM(w,x) in terms of o(x,z) are not tractable analytically although a few
approximate cases have been worked out. In general, solutions are obtain-
able only by using numerical methods such as finite differencing over a two

dimensional grid. Computer programs are available which implement these
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techniques (Patrick, 1969). It would appear that the inverse problem of

finding o(x,z) in terms of ZTE(w,x) and ZTM(w,x) could in principle be solved
using iterative techniques similar to those used for the one dimensional inverse
problem. It is believed that such a solution would be unique, although no

proof is known. On the other hand, the number of calculations involved for
grids large enough to be of interest is so great that the problem seems to be

out of the range of present day computers. Nevertheless, useful and instructive
Information about two dimensional modeling can be obtalned from solutions of

the forward going problem.

B. Z in a General Coordinate System for Two Dimensional Models
As was shown above, for a two dimensional model the TE and TM
modes decouple when one of the horizontal coordinates is aligned with the
strike. It will now be useful to obtain the relationship between the tangential
fields in a coordinate system in which the horizontal axes are arbitrarily
oriented.
Suppose that the x'- y' coordinate system as shown in figure S

is aligned with the strike, so that

Ex = ZTMHy (3.10)
and
Ey = _ZTE Hx (3.11)

Suppose that the x-y coordinate system is oriented at an angle 8 with

respect to the x' - y' system as shown in figure 5. Then

E = E'cosf® +E'sinh (3.12)
X X y

E = -E'sin8% +B'cos?b (3.13)
Yy X Yy

and

H = H' cos8 +H' sinb (3.14)
X X y

H = -H'sin6 +H' cosb

v x v (3.15)
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or alternately

Hx chos e-Hysin ] (3.16)

Yy
Comblning these equations gives

H sin8+H cos 8 (3.17)
X y

E = BE'cos 8+E'sin8
X X y

= (2 Hy) cos § + (—ZTE Hx) sin 8

™
ZTM(Hxsm 8 + Hy cos 6) cos 8 - ZTE(chos 8-

- H sin9) sin®
y

2
Hx[ (ZTM - ZTE) sin 8 cos 6] +Hy[ZTM cos” 8 +
2
+
ZTE sin” 8]
Thus if one defines

E=2 H +Z H
X "XX'x xy'y

then
Zxx= (ZTM— ZTE) sin 6 cos 8
_ (.Z_TME'_EIED sln 26
and
Z =2 526+Z sinze
xy  “TM ° TE

(LY ¢ (B cos 2

Similarly for the other components, one obtains

2y - (B ¢ (B coue

and
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zyy= <_Zl_E§-_E_'IM> sin20

In summary

E Z.sin28 Z,+7Z cos26 H
X 1 2 1 X
= (3.18)
E -Z.+2. cos26 -Z.sin28 H
y 2 71 1 Y
where
z1 = (zTM— ZTE)/z (3.19)
Z,= (zTM+ zTE)/z (3.20)

In general, then, for a two dimensional model, the tangential
components of E and H are related by a rank two tensor impedance. The
diagonal terms of the Z matrix are in general negatives of each other and they

reduce to zero when the axes are aligned with the strike.

C. General Form of Z for Three Dimensional Models

For three dimensional models where ¢ is a function of all three
space coordinates, the six field components are in general all coupled to each
other, so it is not possible to s'eparate the analyslis into two distinct modes
as was done for the two dimensional case. Nevertheless, it Is possible to
make some general statements about the relationship between the tangential
components of the E and H fields.

It will now be shown that a rank two tensor impedance of the form
shown in equation (1.1) is unique and stable, sabjec: once again of course to
the assumption that the horizontal wavelengths of the incident fields are long
compared to a skin depth in the earth. Also it will be useful for later purposes
to establish that in general the vertical magnetic field can be expressed as a

linear combination of the two horizontal H field components. That is,

H_= rszx+ rzyHy (3.21)

2
r4
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where L and rzy are dimensionless constants, subject also of course to

the assumption that the incident fields have horizontal wavelengths long
compared to a skin depth. This assumption implies that the incident fields
may be treated as normally incident plane waves. This being the case, the
incident fields can be separated into two orthogonal linearly polarized plane
waves. Clearly, for a linearly polarized normally incident plane wave, each
of the components of the total E and H fields will be proportional to the ampli-
tude of the incident wave. Thus, if the incldent E is linearly polarized in the x

direction then

X 17xi
Ey = a2 Exl
Hx - bl Exi
Hy = b2 Exl
Hz - c1 Exi

where Exl is the incident field. Similarly, if the incident E is linearly polar-

Ized in the y direction

Ex= aSByl
Ey= a4Ey1
Hx= b3EYI.
Hy= b4Eyl
Hz= CZEYI.

Sir.ce all of the field equations are linear with respect to E and H, superposition

must hold. Thus for a general normally incident plane wave

B 3Bt 3By

24




Ey = aZExi+ a4Eyi
Hy= b B *bE,
Hy = bZExi+ b4Eyl
= +
H, o= Btk
or in matrix notation
| E | [E_ ]
X xi
= [A]
E .E .
- N YL
r—H—1 ~E O
X xi
= [B]
H E
Yy yi
and
Exl
H = [C]
E
|yl
If [B] is nonsingular, then
E.] fH
xi 1 X
= [BJ
E H
yi y
so that
E H
X X
-1
= [A]J[B]
E H
Yy y
and
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B = (CI@E]" (3.22)
g N H
y
4 Thus
. (2] = [AJ[B]'l (3.23)
and
(1] = [, 7,1 = [CIET (3.24)

So (2] and [r] are defined, and Ex’ Ey and Hz can be expressed as linear

combinations of Hx and Hy. The only problem that might arise would be if

[B] were singular. Singularity of [B] implies that

b1b4 =b2b3 (3.25)

Now for any reasonable earth model, the reflection coefficient for the mag-
netic field at the surface is almost unity so that the total H field is close to

twice the incident field. Thus, a normally incident plane wave with E linearly

polarized in the x direction (and hence H linearly polarized in the y direction)

RTINS

will give rise to total fields such that Hy will be considerably greater than Hx‘

Thus
1 b, | >> |b, |

PRI

3 Similarly, for @ normally incident plane wave with E linearly polarized in the

y direction, HX will be somewhat greater than Hy. Thus

|b,1>> |b,|

So clearly
|b2b3| >> |b1b4|

Comparing this with equation (3.25) indicates that for any reasonable earth
model, [B] will not be singular, and hence Z is defined by equation (3.23).

Next it will be useful to observe the behavior of the elements of

Z as the coordinate system is rotated. As with the two dimensional model,
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the elements of Z in the x~y coordinate system will be expressed in terms
of the elements of Z in the x'-y' coordinate system as shown in figure 5.
The derivation is the same as for the two dimensional case except that

equations (3.10) and (3.11) are replaced by
4

E' =2' H +Z2' H (3.26)
x XXX XYy
and
E' =2' H +2Z' H' (3.27)
y yX X Yy 'y
Thus
E =E' cos8 +E'sinb
X X y
= (2' H' +2' H')cosb + (Z2' H' +Z' H' )sinb
XX X Xy'vy YX X yy vy
= (Z2' cosB+Z' sin®)H' +(Z' -cosbB+3Z' ‘sind) H'
XX yX X Xy vy y
= (Z' cos8+Z' sin8)(H cosb6-H sinb)
XX yX X y
+(2' cos6+2' sinB)(H sin6+H cosb)
Xy Yy X y
= [2! cosze+Z' sin26+(Z' +2' )sinBcos 0] H
XX vy yX Xy X
+[2Z! cosze—Z' s'm29+(Z'_ -2' )sinBcos8]H
Xy yX b4 XX Yy
So that

z =2 cosze+Z' sin29+(z' +Z'>Js'mecose
XX XX Yy Xy Yy

(M) + (ZL;Z';LZ> cos 26+ <—Z—;9’—;;Ej{-}i> sin2 8

Similar expressions forZ , 2 _, and 2 are obtained. 1he results are
Xy yX vy
Zxx=z +2,c0820 +Z_sin286 (3.28)

1 72 3

ny=Z4+2300526—Zzsin26 (3.29)
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2 =-=Z +%Z_cos28 -2, sin28 (3.30)
¥

4 3 2
= 9 - 2 - H
Zyy Ai Z2 cos 28 Z3 sin28 (3.31)
where

2o Ly
Z. = (3.32)
1 2

e Py
Z, = (3.33)
2 2

2y * P
2, = (3.34)
3 2

Z;{ - Z‘x
Z4 = —LY—,) (3.35)

If one further defines

zo(e) = 23 cos 26 - 22 sin2 8 (3.36)

Then equatlons (3.28) through (3.31) become

2 =2 " z (8 +45°) (3.37)
2oy =24 Z,(8) {3.38)
zyx= ~Z,+2(0) {3.39)
Zyy= z1 + zo(e +459) (3.40)

The function zo(e) traces an ellipse in the complex plane centered

onthe origin as 9 varies from. zero to 180°. To show.that this.is true take
B) =x+j
Zo( ) =x+jy

where x and y are real. From equation (3.36)

28




A 2 A A I e o T

j e ey

x=Re[ZSJcos 20 - Re[Z,,] sin 28
=Acos(26 - @)

y =Im[Z3Jcos 26 -Im([2,] sin 26

L2 CACaN S

5 =B cos (26 - B)
I etting
28-a = 0
% B-a = Py
: gives
F x = Acos ¢
and
; y=Bcos(cp-cpo)=Ccosc,o+Dsincp
$ Thus
'.3 cos = 2
) Vo) A
and
- /"__'_"2
sin ¢ = *,/1-(x/A)
p So that o
g - X +/1- 27
; v=c[3]+p[+/1-en?]
1 or
‘ 2 2
* A A
: or
Azy2 + (Cz-i- Dz) x2- 2AC xy - DZA2 =0
¢ This is the standard form for an ellipse centered on the origin. Thus zo(e)
A
E traces an ellipse in the complex plane as 0 varies. Referring to equations

(3.37) through (3.40) one observes that each of the elements of Z then

traces an ellipse in the complex plane as the measuring axes are rotated.

ML s en

o e
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D. Comparison of Z Matrix for Two and Three Dimensional Models

As was shown in the previous section, for a three dimensional
model, the elements of Z trace ellipses in the complex plane as the measuring
axes are rotated. From equation (3.18) one cbserves that for two dimensional
models, the theta dependent parts of the elements of Z have fixed phases.
Thus the ellipses degenerate to straight lines for the two dimensional case.
Also one observes from equation (3.18) that the diagonal terms of the Z matrix
for the two dimensional case have no constant term. Thus the straight line
representing the locii of Zxx and Zyy in the complex plane passes through the
origin, Figure 6 illustrates the general form of the locii of the elements of 2
in the complex plane for the two and three dimensional cases,

At the present time solutions for the general three dimensional
problem are not available. For this reason, it is usually desirable to find one
dimensional or two dimensional models that approximately fit measured data
which in general is of course three dimensional. It frequently happens that,
over some limited frequency range, measured data looks almost two dimensional:
that is, the Z ellipses almost collapse to straight lines and the diagonal terms
of the Z matrix are almost negatives of each other. This situation will occur
whenever there exists a horizontal direction along which the conductivity cross
section is nearly constant for a distance of several skin depths ‘Whenever
this situation exists, it is desirable to determine the approximate strike direc-
tion and to estimate the corresponding ZTE and ZTM for comparison with
theoretical Z's from two dimensional models.

Several methods have been proposed for estimating the principal
impedance axes [Swift, 1967] all of which cenverge to the correct result when
the data is actually two dimensional. From the point of view of the impedance

ellipses, the most reasonable way seems to be to take

yA 2. =2 izg (3.41)

TE' "TM 4

where Z(; is the semi-major axis of the ellipse ZO(B) as defined in equation (3.36)
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This method yields the principal directions as the values of 0 which maximize
|zo(e) | . A little algebra will show that these values of 8 are given by the
equation

2(x,%3% oy

2 2 2 2
(x2+y2)-(x3+y3)

tan 48 = (3.42)

where X, and Y, are the real and imaginary parts of Z.l respectively, with
Zi being defined by equations (3.33) and (3.34). Incidentally, this method
gives the sam; result azs Swift's method of flndizng the angle 8 which maxi-
mizes “nyl + [Zyx| } or minimizes {IZxxl + 'iZyyl 1.

Having thus obtained estimates of the principal axes of the
impedance matrix and the corresponding principal impedance values, it is
desirable to have some measure of how two dimensional the data actually is.
To accomplish this, there are two parameters that should be considered.
First, there is the ratio of the constant terms in the diagonal and off diagonal
elements of the Z matrix. In other words, the ratio 21/24 where Z1 and Z4
are defined in equations (2.32) and (3.35). Second, there is the ratio of the
minor axis to the major axis of the zo(e) ellipse. The magnitudes of both of
these ratios should be small compared to unity in order for the data to fit a

two dimensional model.

E. Use of Hz for Determining the Strike Direction

In the previous section, an indication was givzn as to how one
might estimate the principal axes of @ measured impedance matrix which is
approximately two dimensional. However, no method was given for determin~
ing which axis represents the strike direction. This matter can be easily
resolved in terms of Hz, the vertical magnetic field. Recall from equations
(3.2) through (3.9) that HZ appears only in the equations for the TE mode.
Thus, with the x'-y’' axes aligned with the strike, as in section B of this

chapter
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In the x~y coordinate system, at an angle 6 from the x'-y' system

Hz = HZ =r Hx = Top (chose -~ Hysine)

Hz = erTE cos 6 - HerE sin 6 (3.43)

Recall from equation. (3.21) that for the general three dimensional model

H' =" H +r' H'
z ZX X zy ¢y

so that
H =H =r H +r H
z zZ 2ZX X zy'y
=r' (H cos6-H sinB) +r* (H sin6 +H cos8)
zZX X y 2y X y
=H {r' cos®+r sinb) +H (r' cosb -r'_ sinb)
X' 2x zy y'zy zX
Thus
r =1 cosf®+r' sin® (3.44)
ZX ZX zy
and
r =r' cosb-r"_ sinb (3.45)
zy zy zZX

Comparison of equations (3.44) and (3.45) with equation (3.36) indicates that
r and rz like zo(e) trace ellipses in the complex plane as 8 varies.
However, the important difference is that the magnitudes of rzx and rZy have
only one peak every 180° instead of every 90° like zo(e) . Furthermore, one
observes from equation (3.43) that in the two dimensional limit, the angle 8

that maximizes rzx ls the strike direction.
Thus, when measured data is approximately two dimensional, the

angle that maximizes Irle should correspond to one of the principal axes of
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the Z matrix, and so it ls possible to estimate the approximate strike direction

and the corresponding ZTE and ZTM'
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1IVv. METHODS FOR ESTIMATING THE Z MATRIX FROM MEASURED DATA

Now that a considerable amount of attention has been given to the
forms of the Z matrix for various classes of models and to possible interpre-~
tations of Z, it is time to consider some methods for estimating Z from

measured E and H field data.

A. The General Problem

Consider the equation
E =2 H +2 H
X XXX ‘xyvy

where Ex' Hx, and Hy may be considered to be Fourier transforms of measured
electric and magnetic field data. If one has two iridependent measurements of
Ex' H , and Hy at a given frequency, denoted by Exl' Hxl' Hyl’ E H

X x2' T'x2
and Hyz respectively, then

Ea B
z - ExZ HyZ
XX H « Hyl
Heo o By
and
Ha B
7 - HxZ 1:"'x2
Xy H « Hyl
Hyz y2
provided
Hleyz - HxZHyl # 0 (4.1)
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Equation (4.1) simply states the fact that the two field measurements must
have different source polarizations. If the two have the same polarization,
they are not independent.

Since any physical measurement of E or H will include some
noise, it is usually desirable to make more than two independent measure-
ments, and then to use some type of averaging that will reduce the effects
of the noise. Suppose one has n measurements of Ex' Hx’ and Hy at a
given frequency. One can then estimate Zxx and ny in the mean square
sense. That is, define

v =

* * * * *
(E..-2_H .-Z H )E . -Z H -2 _H )
XIi XxX'xi xy yi'Txi xxxi xyvyi

nL~1-

i=1

*
where Exi is the complex conjugate of Exi' etc., and then find the values
of Zxx and ny that minimize ¥. Setting the derivatives of ¥ with respect

to the real and imaginary parts of Z_, to zero yields’

n n

o * - *

JEH =2 ) H H +2
Xixi XX xixi Xy

n
), H H (4.2)
i=1 i=1 i=

Similarly, setting the derivatives of ¥ with respect to the real and imagi-

nary parts of ny to zero yields

n n n

TE H* =2 5 H H* + 2 T-.H H* (4.3)
L Pxivtyi Txx L By vi xyZ' viyi ’
i=l1 i=1 i=1

Notice that the summations represent auto and cross power density spectra.
Equations (4.2) and (4.3) may then be solved s. nultaneously for Zxx and
ny. This solution will minimize the error caused by noise on Ex. It is
possible to define other meun square estimates that minimize other types

of noise. For example, if one takes
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the resulting solution will minimize the error introduced by noise on Hx'
There are four distinct equations that arise from the various
mean square estimates. In terms of the auto and cross power density

spectra, they are

EE* =2 HE* + Z H E* (4.4)
X X XX X X Xy'y X
EE* =72 HE* + Z H E* (4.5)
Xy XX XY XY vy
EH* = Z HH* + Z H H* (4.6)
X X XX X X Xy'y X
and
EH* = 2 HH* + 2_H H* (4.7)
X'y XX X'y XYvy

Strictly speaking, equations (4.4) through (4.7) are valid only

if EXE; ' EXE; , etc. represent the power density spectra at a discrete

frequency « . In practice however, Zij are slowly varying functions of

frequency, and as such, EXE;, etc. may be taken as averages over some
finite bandwidth. This is fortunate since it facilitates the estimation of

the power density spectra.

B. Estimation of Power Density Spectira

There are a variety of standard techniques available for esti-

mating ExE;< , EXE; , etc., the auto and cross power density spectra,
several of which will be considered here. In dll the cases, it will be

assumed that the field components are given as sampled time sequences.
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1. One method that was frequently used in the past was that of
using the auto and cross correlation functions of the field components. This
method makes use of the fact that the Fourier transform of the auto correla-
tion function of a given signal is equal to the power density spectrum of that
signal. Also the Fourier transform of the cross correlation function between
two signals is equal to the cross power density spectrum of the two signals.
Blackman and Tukey (1958) have considered in detail the various aspects of
estimating correlation functions and the corresponding power density spectra
for sampled time sequences. They have given careful attention to the spectral
windows that result from truncating the time sequences and the correlation

functions. Hopkins (1966) and others have used this method for obtaining

estimates ofE_x_E_; ' EXE; , etc. in magnetotelluric work, This method, when
compared with the ones that will be considered next, has several disadvan-
tages. First it is more time consuming on the computer when many cross
spectra are needed. Second, it gives statistically correct results only

when the signals are stationary. Finally, it is more susceptible to error
from the side lobes of the spectral window when the spectra are not reason-
ably flat. Blackman and Tukey suggest that this third disadvantage can be
circumvented to some extent by digitally prewhitening the time sequences
prior to computing the correlation {unctions.

2. Another method for estimating the power density spectra of
the field components begins by subdividing each of the time sequences into
several blocks. For each data block one computes the Fourier transforma-
tion to obtain estimates of Ex(w) . Ey (w), etc. Then one forms the products
E_E*, EXE; , etc. Finaily, for each frequency, one averages the products

PiP: S

over the several time blocks, thus obtaining time averaged estimates of

E E* ,E E*, E H* , etc. This method is particularly well suited to small
X X Xxy' B xX'x
digital computers since only one time block of data needs to be stored in

memory at any given time, and the blocks may be quite small compared to the
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total time sequences. Also this method is especially useful for situations
: where the signals contain noise bursts that are isolated in time. Such
noise bursts may arise from tape drop-out, system saturation caused by
large amplitude signals, or many other sources. Such noise bursts are

often readily detectable so that data blocks containing them may simply

FAA SRR X b Rl i

be omitted from the time average.

3. Another method for estimating the power spectra that is

RO LR el

very similar to the previous one consists of feeding the original time
sequences into a bank of narrow band digital recursive filters spanning the

desired frequency range. The outputs of these filters are then treated the

g vToe e oo

same as the outputs of the block Fourier transforms of the previous method.
This recursive filter method has essentially the same advantages as the
previous method together with the additional advantage that it lends itself
quite readily to obtaining spectral estimates equally spaced on a log fre-
quency scale. This is because the recursive filters may be designed such
that they all have the same Q and have the appropriate spacing on the fre-
quency scale. Swift (1967) has used this technique.

4. For the final method to be considered here, one begins by
Fourier transforming each of the entire time sequences. The products

EXE;"( ' ExE; . etc. are then formed for each harmonic. Finally the products

are averaged over several neighboring harmonics to obtain the desired band-
width. As far as computation time is concerned, this method is quite effi-
cient if one uses the Cooley-Tukey algorithm for fast Fourier transforms.

In fact, for a given number of multiplications, the spectral windows obtain-
able by this method are better than those obtainable by any of the other
methods considered here. (A detailed discussion of spectral windows is
included in Chapter V.) This method, like the last one, lends itself readily to
constant Q estimates of the spectral density since the number of harmonics

averaged in each band may be made approximately proportional to the center
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frequency of the band. The primary disadvantage of this method is that,
compared to the two previous methods, it requires a fairly large number of
storage locations; in general it requires a large computer. Actually, in a
modified form which is not quite as efficient computationally, the Cooley-
Tukey algorithm is applicable to small computers. For a detailed considera-
tion of this algorithm, see Cooley (1965).

If then, by one means or another, estimates of the auto and
cross power density spectra are obtained, one can proceed to estimate the

elements of the Z matrix.

C. Estimation of Z from Auto and Cross Power Density Spectra
Consider equations (4.4) through (4.7). Under certain condi-
tions, these equations are independent so that any two of them may be
solved simultaneously for Zxx and ny. Since there are six possible distinct

pairs of equations, there are six ways to estimate Zxx and ny. For example,

the six estimates for ny are

= (HXE;) (EXE;) - (HxE.;) (EXE;) 4.9)
Xy
EEDEED - (1FDH £

= (HXE;;) (EXH;) - (HXH;) (EXE;) @.9)
Xy S P s R e )
(HXE;) (HyH;_) - (HXH;) (HYE;)

= (HXE;;) (ExH§) - (HXH;) (EXE;) .10
Xy " _ ‘
(HxEx) (HYH;;) (H XH ;) (HyE;)

(HXE;) (EXH;‘() - (HXH;) (BxE;)

(4.11)

Z
Xy
(HXE;;) (Hyn;) - (HXH;) (Hyz;)
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(H_E*)(E_H*) \HxHj)(ExEl)

Exy = =X XY (4.12)
H E*)(H H*) - H H*)(H F*)
HENHHY - (4 HHE )
and
H H*)(E H*) - H H*)(E H*
__ EEEE) - HE)ERY 1
XY * * - * *
(HXHX) (HyHy) (HxHy) (Hny)
where —Z_ denotes a measured estimate of 2 . °
Xy Xy

It turns out that twr of these expressions tend to be relatively unstable for the

one dimensional case, particularly when the incident fields are unpolarized.

For this case E_E* , E H* , E H* , and H H* tend toward zero, so that
Xy X X yvy X'y
equations (4.10) and (4.11) become indeterminant. The other four expres-
sions are quite stable and correctlv predict ny =E /Hy for the one dimen-
sional case, provided the incident fields are not highly polarized.
This same thing is true of the other three impedance elements
Z ,2 ,andZ . In each case there are six ways to estimate Z,,, two
XX YX Yy 1j
of which are unstable for one dimensional models with unpolarized incident
iields.. Also in each case the other four estimates are quite stable for any
reasconable earth niodel provided the incident fields are not highly polarized.
As was mentioned earlier, any physical measurement of E or H
will necessarily contain some noise. It is desirable now to consider how

such noise will aifect the Z estimates defined above. Suppose that

E =E +E (4.14)
X XS xn

E =E +E (4.15)
Y ys yn

H =H +H (4.16)
X Xs Xxn

H = H +H (4.17)
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where

VA Z H
Xs XX Xy XS

A Z H
Ys yX Yy ys

andE ,E ,H andH are noise terms. If the noise terms are all zero,
xn’ “yn’ "xn yn

then the four stable estimates of each of the elements of Z are the same, and
. Z..
ij ij

On the other hand, when the noise terms are nonzero, the four estimates are
in general different.

Equation (4.13) for ny corresponds to the one that Swift (1967)
used. He showed that his estimates of Zij were biased down by random
noise on the H signal, but were not affected by random noise on the E signal.
Similar arguments fcr the four stable estimates defined above indicate that in
each case, two of them are biased down by random noise on H and are not
biased by random noise on E {for example, equations (4.12) and (4.13) for

ZW) while the other two are biased up by random noise on E and are not

P

biased by random noise on H (for example, equations (4.8) and (4.9) for

—Z—xy) . The effects of the noise are most easily seen for the one dimensional

model. For this model, if the incident fields are depolarized so that EXE* '

E H* . E H* , and H H* tend to zero, then equations (4.8) and (4.9) for
xx' Yy Xy

Z.  reduce to

Xy

=F Px /4 P*
zxy EXEX / HyEx (4.18)

Equations (4.12) and (4.15) reduce to

Z =EH*/H H* 4.19
XY/YY ( )

Xy
4]
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If one assumes that Ex and Hy are given by equations (4.14) and
(4.17) and the Eyn and Hxrl are random and independent of the signals and of

each other, then the expected values of the power density spectra are

<E E*> = <E E* > #+ <E_E* >
X X XS XS Xn xn
<H H*>= <H H* >+ <H H* >
Yy ¥s Ys yn yn
*
<E H*> = <Y E*> = <E H*>
X'y Yy X Xs' ys

Thus, if the spectral estimates contain enough terms in the average so that

the cross terms may be neglected (i.e. ExsE;m , etc. are negligible), then

equation (4.18) gives

E E* +E E*
XS XS Xn xn E noise power )

ny - Pr—— = ny 1+ E signal power (4.20)
ys Xs
and equation (4.19) cives
e XS ;s H noise power
VA = =Z /Q0+ - ) (4.21)
Xy H H* + B H* Xy H signal power

ys ' ys yn yn

Thus the estimate shown in equation (4.20) is biased to the high side by
random noise on E while the one in equation (4.21) is biased to the low
side by random noise on H. For similar percentages of random noise on
E and H, an average of the various.estimates hopefully will be better.
than any one estimate by itself. Also the scatter hetween the various esti-
mates should be a gocd measure of the amount of random noise present.

In practice of course things are not quite this neat because the
assumption that the cross terms in the average power estimates are negigible

may not be valid. For example, terms of the form Ean;n will not he
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negligible if the two noises are coherent. Such might be the cas= for certain
types of instrumentation noise or local industrial noise or 60 cps power line
noise. Also terms of the form ﬁ will not be negligible if the noise is
coherent with the signal source. Even if all of the noise terms are random
and independent of the signals and of each other, the cross terms may not

be negligible if the average power estimates do not have enough degrees of
freedom.
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V. NOISE PROBLEMS

As was mentioned in the previous chapter, any physical measure-
ment of E or H will include some noise. This noise may be in the form of
a constant bias caused by inaccurate calibration of the measuring system,
or it may be a nonlinear effect such as would result from drift in the
sensitivity of the measuring system. On the other hand many types of noise
are independent of the signal. These include such things as amplifier noise,
60 cps power line nolse, digitizer round off noise, and, if the signals are
recorded in analog form, tape recorder noise. Aiso, there is always the
possibility of having source generated noise. For example, if the incident
fields include sr.ne plane waves with horizontal wavelengths short compared
to a skin depth in the earth, the resulting surface fields may be represented
as containing noise.

In any event one can always represent the measured field components
as sums of signals and noises as indicated in equations (4.14) through (4.17).
The degree to which the noise terms are independent of the sijynal terms
depends entirely upon the source of the noise. In the cases where the noise
terms are dependent upon each other or upon the signal terms, the effects of
the noise upon the Z estimates vary according to which estimates are used,
and according to which signal and noise terms are coherent. No attempt has
been made to catalogue all of the various possib = combinations of signals and
coherent noises.

For the situation where the noise terms are independent of each other

and independent of the signals, some interesting results can be shown.

A. General Incoherent Noise
As was mentioned in the previous chapter, the various estimates
of the elements of the Z matrix are biased either up by random noise on E or

down by random noise on H. This is caused by the fact that the auto power
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den: ity spectra are in general biased up by random noise, while the cross

powe.' density spectra are not biased. For example, suppose that

E .= E + E . (5.1)
and

H =H +H (5.2)

y ys yn

where

<E E* >= ¢ (5.3)

XS Xn s
<H H* >=0 (5.4)
ysyn
* —
<Eanyn> =90 (5.5)

and where the brackets < > denote "expected value of. Clearly, for this

situation
<EE*> =<E E* >+<E E* > (5.6)
X X XS XS XN Xn
<H H*> =<H H* >+<H H* > (5.7)
vy ys'ys yn'yn
and
< *s = * > )
ExHy xsHys (5.8)

Equation (5.8) implies that the cross power can be estimated to any arbitrary
degree of sccuracy by measuring the fields for a long enough period of time.
On the other hand, equations (5.6) and (5.7) imply that the estimates of the
auto powers will be biased regardless of the length of time that the fields are
measured.

These ideas lead one to consider an alternate approach to the
problem. Suppose that one performs two simultaneous independent measure-

ments of one of the field components, say Ex. If the results are
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E:xl Exs Exnl (5.9)
and
Ex2 - Exs * E"xn2 (5.10)
where
* —4
<ExsExnl> 0 (5.11)
* 4
<ExsExn2> 0 (5.12)
and
* —i
ExnlEan> 0 (5.13)
then
* - *
<EBra® T BBy (5.14)

Equation (5.14) implies that the Ex auto power density spectrum can be estimated
to any arbitrary degree of accuracy from two simultaneous noisy measurements
of I':‘.x if the measurements are taken for a long enough period of time and if the
noilses on the two measurements are independent.

In general, if one has double measurements of either-the two tan-
gential components of E or the two tangential. components of H,. one.cen obtain

estimates of the four elements of the Z mstrix that are not biased by random noise,

B. Numerical Noise

At this time conslderation will be given to several specific types
of numerical noise. The term numerical noise as used here refers to any noise
that is artificially injected into the signal when the latter is sampled for
numerical processing.,

1, Perhaps the most commonly recognized form of numerical nolse
is that which is usually referred to as aliasing. In accordance with the samp-
ling theorem, if a continuous function which is sampled at a rate fo has any
frequency components greater than the Nyquist or folding frequency (equal to

fo/2) , these components will be lost from the sampled version of the function.

46




i adery

YT AT Ty

£ | Ak

AunLt Ty vg

If any spectral analysis Is performed on the sampled function, the lost fre-
quency components will appear folded down into the desired spectrum, and
will of course represent noise. Since aliasing is a well documented and well
understood phenomenon, nothing more will be said about it here except to
note that anyone who deals with magnetotelluric data or any other form of
sampled data should be aware of it.

2. The next type of noise that will be considered here 1s round off
arror on the analog-to~-digital converter. This type of noise arises from the fact
that the A-D converter has only a finite number of discrete levels. Typically
the signal passes through many levels between sample points. For this reason,
the nolse can be characterized quite well as a8 sequence of independent random
variable s with amplitudes ranging from ¢/2 to -¢/2 with a flat distribution where
¢ is the distance between adjacent levels on the A-D converter, Thus the noise
spectrum will be flat. The total noise power for 2m data points will be

] e/2
Total Noise Power = . S

-¢/2

dex=€2/12 (5.15)

Since the spectrum is flat, the average noise power per harmcnic would be
62/12m for m harmonics. If the signal spectrum were also flat, the average
signal power associated with each harmonic would be about (Me)2/12m where
M is the number of digitizer levels that corresponds to the maximum peak to
peak amplitude of the signal. Thus, the signal to noise ratio would be on the
order of Mz. In practice, it frequently happens that the signal spectrum is not
flat. In this case the expected signal to noise level for a given harmonic is

about
2 __Signal power in harmonic
Average signal power per harmonic

_ 2  Signal power in harmonic
= Mm
Total signal power

(5.16)
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if there is a total of m harmonics.

As an experimental check of the digitizer noise, the following
was done., A t_ypical set of actual magnetic field data was selected. It was
Fourier transformed, and each harmonic was multiplied by a theoretical 2
computed from a typical layered model.. The resulting theoretical E was
Fourler transformed back to the time domain and digitized; that is, rounded
off to & given number of significant bits. The resulting E together with the
original H were used to compute an apparent resistivity versus frequency
curve. Figure 7 shows the individual harmonics of the true E power density
spectrum along with the expected digitizer noise levels for eight and twelve
bit digitizing. Flgures 8 and 9 show apparent resistivity versus frequency for
the individual harmonics for eight and twelve bit digitizing together with the
true Py computed frcm the assumed model. Figures 10 through 12 give the
corresponding results when the power density spectra are first averaged in
bands of constant Q. From these figures, it is seen that, as expected, the
apparent resistivities computed from the individual harmonics have random
scatter when the signal power is not sufficiently large compared to the noise.
Also as expected, the apparent resistivities computed from the averaged power
estimates are ‘biased to the high side by random digitizer noise on E. These
experimental results are consistent with the theoretical discussion of digitizer
noise,

3. The next typ2 of numerical noise that will be considered is
that which results from truncating the time series to a finite length T. Suppose
that one of the field components has an amplitude that is described by £(t) fo*
all time. The Fourier transform F{w) is then given by

®
Flw) = S i) ¢ a (5.17)

It is then desired to approximate F(w) by F(nwo) , @ Fourier series representation
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of f(t) over some time interval T. Thus

- /2 ~jnw _t
P(nwo) = S f(t) e -~ d; n=0<1,%2,... (5.18)
~-T/2
where w = 2n/T.
Notice that
— a . t
Fw) = S £ d(t) e ¥ at (5.19)
-

where d(t) =1 for [t| < T/2 and d(t) =0 for |t | > T/2. Thus, from the
convolution theorem

F(nwo) = S F(w) Dlnw - ) dw (5.20)

- 00
where

(-]
D(w) =S dare) oI g

—

T2 -jwt
= eJ dt

-T/2
¥

sin (mww )

= 20 < (5.21)

w (mw/w )

o o

D(w) is usually called the spectral window since the observed spectrum —I-_‘(w) is

equal to the true spectrum F(w) convolved with D(w).

The spectral window defined by equation (5.21) is actually not very
desirable since the side lobes go off only as 1/w. A better window, usually

known as the Hanning window is obtained by letting

S5+ . Scosugt lt] < T/2

a(y) =
¥ 0 ;o] > 1/2

(5.22)
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Then

/2 -jwt
(,5+ .5 cos wot) e Yt at

-T/2

D(w)

2
0 sin (m w/wo)

(5.23)
w (wj - wz)

The main lobe of this spectral window is twice as wide as the main lobe of
the previous one; however, the side lobes go off as 1/w3. The two windows
are compared in figure 13.

One could define windows that have even smaller side lobes;
however, they would necessarily have wider main lobes, and as will be seen
later, this Is not desirable. The Hanning window seems to be an ..dequate
compromise between main lobe width and side lobe height.

One is then faced with the fact that any physical 2stimate of the
power density at a particular frequency w is necessarily a weighted average
of the wrue power density over a band of frequencies, the weighting function
being the spectral window D(w). If the impedance function that one is attempt-
Ing to estimate does not change significantly over the bandwidth defined by
D(w), then the estimate will not be corrupted by the truncation effects. In
practice, however, the impedance does change some so that there will be some
truncation noise. The problem is particularly severe if the power density
spectra have resonant peaks or other steep slopes. If one is attempting to
estimate the power density near the bottom of a steep slope, the contributions
from the side lobes of the spectral window may be significant compared to the
contribution from the main lobe. This effectively broadens the bandwidth over
which the impedance function must not change.

These considerations lead one to inquire into the spectral behavior
of the E and H fields used in magnetotelluric surveying. OCne would hope that

the general shape of the spectra of the incident E and H fields might be more
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or less indepencent of time and space coordinates. If this were the case, then
the measured total H field, which is close to twice the incident H field, would
also be reasonably stationary with respect to time and space coordinates, and
hence it could be prewhitened. On the other hand, the total E field is a
strong functlon of the local conductivity structure and hence, although it would
be stationary with respect to time, the shape of the spectrum wouid change
from cne location to the next as the conductlvity structure changes. But still,
the surface impedance Z is a well behaved function of frequency and as such
one would expect that if the E signals were passed through the same filters as
were designed to prewhiten the H signals, the resulting filtered E signals
would have a reasonably well behaved spectrum. This, in general, turns ocut
to be the case. Actually, as is indicated by equations (2.16) and (2.27), 2
tends on the average tn be proportional to the square root of freque... . s0O
that an optimum filter for E would differ from the H filter by a factor of 1/J/w.
With these ideas in mind, a study was made of the spectra of
some actual H field data recorded in central Texas. Figures 14 and 15 give
composite plots of Hx and I-Iy power density spectra obtained from 104 different
data samples recorded at five different sites in central Texas. This data was
recorded by D. R. Word, and a magnetotelluric interpretation of the data is
given by him (Word, 1969). From these figures it is apparent that ac least for
the locations and times involved here, the general shape of the H power density
spectra is fairly well defined. However, there are some definite resonant peaks
(for example, around .07 cps and around 2.5 cps) that appear in some of the
spectra but are absent from others. Tiiese results are consistent with those
obtained by other investigators (Hopkins, 1966), (Bleil, 1964). It is believed
that if the analog H signals are prewhitened according to the general trends
shown in figures 14 and 15, the Hanning window can be used without enccunter-
ing any side lobe difficulties except perhaps immediately adjacent to the

observed resonances.,
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j In order to get an estimate of the effects of truncation upon the

ot {aus o o

individual harmonics cf the Fourier spectra, consider the following prchlem.

g
T

Assume a one dimensional case with

T

E(w) = Z(w) H(w) .

Suppose that the H signal is prewhitened with a filter that has a response

‘ FH(w) ., and the the E signal is passed through a filter whose response is
FE(w) which may or may not be the same as PH(w) . Assume that the outputs

of these filters are Ho(w) and Eo(w) respectively, so that

g _ E(w) _ Eo(w) . FH(w)
Hw) H o(uu) FE(w)

(5.24)

Then define

Eo(w) _ Z(w) Fﬂ
H_ () - PH(w)

Gw = (5.25)
Thus G(w) is the ratio of the prewhitened electric and magnetic field signals
and will be equal to Z(w) if the two prewhitening filters are the same. If the
prewhitened signals are then sampled and a Fourier series analysis is per-

formed on each, the results will be

H(nwo) = S Ho(nwo- w) D(w) dw (5.26)

e vmn A e e = e s an e e

and -
E(nwo) = S E_(nw_ - u) D(w) dw

. = S H,(nw_ - o) G(nw_- ) D(u) dw (5.27)

A o o

where D(w) is again the spectral window used. If G were constant over the
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width of the window, then one would ha.e

E(nwo) G(nwo) S Ho(nwo- w) D{w) dw

G(nwo) E(nwo)

(5.28)

the desired result. In practice nowever, G usually varies some. Suppose

that in the neighborhood of nw_, G can be represented by the first two terms

of a Taylor series expansion. Thus

G(Q\) = G(nwo) + (\ - nwo) G‘(nwo)

where

aw = 4500

If one lets \ = nwo- w, equation (5.29) gies

G(nwo— w = G(nwo) - wG',(nwo)

Putting this into equation (5.27) gives

S Ho(nwo- w) [G(nwo) - wG'(nwo)] D(w) dw

E (nwo)

= G(nwo) T—I-(nwo) - G'(nwo) S Ho(nwo- w) D{w) wdw

If one then defines
G(nwo) =E (nwo)/ H(nwo)
and

error = [E(nwo) - G(nwo)]/ G(nwo)

then from equation (5.32)

53

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)




TR R CRT

TR

[yt

LR 34 FaeraletAd

Tan

T eT—,
RERRT A KIS SRS G N AT S s DA Y A R T

o e e

S

a
2
4
5
=
4
S
N
M
o
Lﬁ
3
2
3

. -
AT,
n e —— i oo fras e

S kv e e o S o s o an | Arn

e o At A sy

e e et A e — —

S Ho(nwo— w) D(w) wdw

Glnw ) =Gl ) - G (nw ) — (5.35)
S H_(nw_- u) D(w) du
and -~
& () Sﬁ Ho(nwo}r w) D(w) wdw
o G(mﬁ; -§. H (nw -w) D(w) dw o
oo

Assume now that the integrals in equation (5.36) can be approximated by sum-

mations of the form

[ -]
H(nwo) = S Ho(nwo— w) D(w) dw
- -]
m
T
=) Hon,iPy (5.37)
i=-m
where
Hon,l= Ho(nwo- iaw) (5.38)
and
{1}
) D=1 (5.39)
{=-m
Then
- (- -]
W(nwo) = g Ho(nwo- w) D(w) wdw
-0
m
_ i
—z Hon,iDi m (5.40)
f=-m
54
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where 1 is the maximum value of w contributing to the integral. That is,
w =0 corresponds to {1 =m.

Assume that for any fixed n, Hon i are a sequence of 2m+1
L

independent complex random variables whose components have normal distri-
butions and zero means. Also assume that the original H signal was pre-

whitened enough so that over any given band, the expected value of the power
density is constant. That is,

<G HY > = o:; 1=0, %1, £2,... % (5. 41)

Since Hon i are assumed to be independent and have zero means,
[

<H >=0

on,i (5.42)

and

<H H% ,;>=0; 187 _ (5.43)

Since Hon | are complex normal random variakies, E(nwo) and V—V(nwo), which

are linear combinations of Hon i must also be complex normal random variables.
o— ’

Consider the statistics of H (nwo) and W(nwo).

T
< Z.. Hon,lDl>

<H (nwo) >

f=-m

= 0 (5.44)

<§(nwo)§*(nwo)>’=<(§ Hon,tD£><in H;n,jDi'>>

=-m j::-m

(Eq. cont'd on next page)
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en,i on,j
fj=-m j=-m
iy 2
Y *
=7 B <Hon,l on, i
i=-m
2 © 2
=y ) D (5.45)
i=-m
W - in
<W(mno)> <z Hon 1D1 - >
i=-m
a m
- r; z <Hon,l>Dii
i=-m
=0 (5.46)
AT '™
<W(nwo)w(nw°)>-<<z Honi im)<z Hon,j j m >
2 m m
_ /8 *
- (m) z z iDj Li<H,, iHon,j
i=-m j=-m
2 m
e 2 2_2
= (m> o z i D, (5.47)
=-m
s ! iQ
<H(nwo)W*(nwo)> _<<z Honi i)(Z Honj j “n-l_ >
f=-m j=-m
(Eq. cont'd.)
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a m m
_ 4 *
" m Z 2 DiDj <Hon,iHon,j>
f=-m j:—m
Q 2 = 2
= s Z £ D, (5.48)
i=-m
If the spectral window D(w) is an even function of w, then Di2 = D_Zi and
m
Z 1D12=0 (5.49)
i=-m
so that
<H (nes,) W nw )> = 0 (5.50)

Thus, H (nwo) and W(nwo) are independent complex normal random variables
with zero means and with variances defined by equations (5.45) and (5.47).

A standard exercise in random variable theory indicates that if two
random variables X and Y are normal and independent with zero means and

equal variances, then the function

has a Rayleigh distribution (see for example, Papoulis, 1965), Since :ﬁ(nwo)
and W(nwo) are complex normal random variables with zero means, their
real and imaginary parts satisfy the conditions of the above exercise. Thus
lﬁ(nwo)l and |W(nwo)| must have Rayleigh distributions.

Bnother standard exercise in random variable theory indicates

that if
V= XY
then the distribution of V is given by
© v 0O ®
Fv(v) = S Sy fxy(x'Y) dxdy+S S fXY(x,y) dxdy (5.51)
o -« -®  yv
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where f)q(x,y) is the joint density of X and Y (see Papoulis, 1965). If X and

Y are independent and have Rayleigh distributions then equation (5.51) becomes

v
§ § £, £,(v) axdy

o O

PV(V)

= S fY(y) FX(YV) dy
(o}

v -y2/2cc: -(yv)z/Za}f

5 e [1-e ] dy
a

y

: = -1
=1 o > (5.52)
1+(—a )
X

where af = <x2> and ayz = <Y2>,

From equations (5.45) and (5.47)

m
-— 2 _ 2
<|H(nwo)| >=0_ z D

i (5.53)
‘ i=-m
B H
i 3 and n m
. = 2 Q. 2 2_2
A < > = (~
i [Winw) | (%) o Z 1“D; (5.54)
i=-m
Also, from equations (5.36), (5.37), and (5.40),
| G(nw ) Winw )
|error | = X mwo) T—I—(nwo) (5.55)

Recall that Fv(v) is by definition the probability that V < v. Thus, equations
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(5.52) through (5.55) combine ‘to give

3 1

- P{|error| 5 ¢} =1 - : (5.56)
d Glnuw ) I

’ (o) 2

. 1+ (e Gl(nwo) ’ K)

i where m

2

! Z b,

. l:-

o K2 = =% (5.57)
¢ (9-)2 g i?p?

s m i

f=-m

and where P{X} denotes the probability, then X occurs. Recall from equations
(5.37) through (5.40) that the summations arose as approximations to integrals.

s If one now lets m - o and passes back to the integral formulation, equation.
(5.57) becomes

eiraring

S Dz(w) dw
2 --
k2 = % (5.58)
', g szz(w) dw

RAR e

Since D(w) has been assumed to be an even function of w, and since
P{|error| >¢} = 1~ P{|error| < ¢}

one has from equation (5.56)

P 1

F ‘ P{|error| >¢} = " (5.59)
- 2

] | Gl 2 § D(w)“ dw

g o

;{ l1+¢ ! él(nwo) : ® ) )

- S w” D(w) “dw

5 o

If D(w) is a block window of width BW, equation (5.59) becomes
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4 |

;! P{|error] > ¢} =

£ | |+ L2e Glnw,)

= (BW)4 | G'(nw )

: | or 1

x P{|error] >¢}= > (5.60)
| G(nw ) |

: 1+ 128 o |

7 ' AG(nw ) '

where AG(nwo) = G'(nwo) « BW = change in G(w) over a band of width BW around
nwo. Similarly, for the Hanning window with

ot -~y
IRttt g .J.“.‘u’.t&qut ISR BN Eh bt et e

2
w
D(w) = Sin 22 (—2—) (5.61)
o ww” -’
o
one obtains
1
P{ |error| > ¢} = 3 (5.62)
32 | Glnw )
L Gw)
o | &,

It has been observed that for one dimensional models

dlog o, (w)

1 1
-9 dlogw <5 (5.63)

-

Now if one uses the same prewhitening filters on E and H

| |G| = |2 | = Jop/s_@) (5. 64)
\ and it follows that
1 d log|G(w) ] 3
4 Tdiogw - 4 (5.69)
or
E dlog|G(w| _ _w_ diGw]| _ 3 (5. 66)
d logw |Gw)]  dw 4 )

i 60




RS TR
o~

TR

t
t

or, for the worst case

I G(nwo) dnw_
G'(nwo) : T 73 (5.67)

Thus, for this case equation (5.62) becomes

1
P{|error| > ¢} = AR - (5.68)
1+~§-n €

Equation (5.68) indicates that, as expected, the probability of the
error being greater than € goes down as ¢ increases. Also, as expected, the
probable error decreases as n, the harmonic numker, increases. The latter
result is expected since |AG(w)/G(w)| should be proportional to the percentage
bandwidth of the window, which in turn is inversely proportional to the harmonic
number. The results of equation (5.68) are summarized in figure 16.

It is doubtful that the results shown in figure 16 are useful quanti-
tatively because of the assumptions made about the form of Ho(w) , the pre-
whitened magnetic field signal. In particular, it was assuined that
0'1_210 = <H°(w) Ho(w)*> is independent of frequency. In practice this is not
attain~ble since, as noted earlier, magnetotelluric signals are rot really sta-
tionary.

In order to get some type of estimate of the effects of truncation
upon realistic data, the following experiment was performed. A typical set of
actual magnetic field data was selected. It was Fourier transformed using the
Hanning window, and each harmonic was multiplied hy a theoretical Z computed
from a typical layered model. The resulting theoreticai E was Fourler trans-
formed back to the time domain, This E, together with the original H, were
truncated to some fraction of the original length. The resulting truncated E
and H ‘signals were Fourier transformed, and apparent resistivitivs were com-
puted from each harmonic. These apparent resistivities were then compared

with the true apparent resistivities for the assumed model. This experiment
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was repeated for several different models with several different original data
lengths and several different truncated data lengths. The results showed a
very definite trend. In each case, the apparent resistivities computed from
the first eight to ten harmonics were significantly in error. The higher
harmonics showed very little error. The amount of error on the first few
harmonics depended significantly upcn how white the spectra were; the
whiter spectra had less error. Figures 17 and 18 show the results of a
typical run. Figure 17 shows the individual harmonics of the spectrum of a
truncated H signal. Figure 18 shows the cotresponding apparent resistivities
along with the true apparent resistivity curve for the assumed model.

These considerations lead one to believe that the first few har-
monics of a Fourier spectrum of typical magnetoteiluric data are likely to be

corrupted considerably by truncation error.
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VI. CONCLUSION

The methods of analysis discussed in the foregoing chapters have been
implemented in a digital computer program constructed by the author for use on
the CDC 6600 computer at The University of Texas Computation Center. This
program estimates the power density spectra of sampled E and H signals by
computing the Fourier transforms of the sampled data using the Cooley-Tukey
algorithm, and averaging the resulting auto and cross powers in frequency bands
of constant percentage bandwidth as discussed in Chapter IV, Section B.4. The
Hanning window discussed in Chapter V, Section B.3 is used for the Fourier
transforms. The elements of the Z matrix are then estimated from the power
density spectra using the techniques described in Chapter IV, Section C. The
principal axes are then determined in accordance with the discussion in
Chapter III, Sections C and D. Also the approximate strike direction is deter-
mined from the vertical magnetic field as discussed in Chapter III, Section E.
As diagnostics, the tensor coherency mentioned in Chapter IV, Section C, and
the two~dimensionality parameters mentioned in Chapter III, Section D, are
determined.

This program has been used extensively for analysis of magnetotelluric
data recorded in central Texas by Darrell Word., Samples of the results are
given by Word (1969). For most of the data analyzed using this program, the
resulting surface impedance estimates have been consistent and repeatable.

In areas where the geology is reasonably one dimensional, these surface imped-
ances have been successfully interpreted in terms of horizontally layered models.
The resulting resistivity profiles have agreed quite well with independent obser-
vations such as resistivity well logs in cases where the latter have been avail-
able,

In areas where the geology is more complex, particularly where it is
highly three dimensional, interpretation has not been so successful. However,

even here the surface impedance estimates have been fairly repeatable. Thus,
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it is believed that now, perhaps for the first time, the surface impedances
have been measured more accurately than they can at present be interpreted.
For this reason, it is believed that future contributions to the science of

magnetotellurics must come in the area of interpretation.
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-Magnetotelluric prospecting Is a method of geophysical exploration that makes use of
the fluctuations In the natural electric and magnetic flelds that surround the earth,
These fields can be measured at the surface of the earth and they are related to each
other by a surface impedance that is a function of the conductivity structure of the
earth's substrata,

This report describes some new methods for analyzing and interpreting magnetotelluric
data. A discusslon s given of the forms of the surface Impedance for various classes
of models, including one, two and three dimensional models. Here, an n dimensional
model is one In which the parameters describing the model are functions of at most n
space ccordinates. Methods are discussed for estimating the strike direction for data
that is at least approximately two dimenslonal, ,(‘A new linearized approach to the one
dimensional problem is discussed., Subject to the approximations of the linearization,
it is shown that under appropriste transformations of the frequency and depth scales,
the reclprocal of the surface impedance as a function of frequency is equal to the
square root of the conductivity as a function of depth convolved with a linear response
function that {s somewhat like a low pass filter.

Included in this report is a comparison of several methods of estimating the auto and
cross power density spectra of measured fleld data, and of several methads for
estimating the surface impedance from these spectra. The effects of noise upon these
estimates are considered in some detall. Special emphasis is glven to several types
of artificial noise including allasing, round off or digitizer noise, and truncation
effects. Truncatlon effects are of the most interest since they depend upon the
particular win:jow used in the spectral analysis.
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